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Abstract 12 

Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding 13 

and predicting reef vulnerability to rising coastal CO2 concentrations and decreasing seawater pH. 14 

However, few studies exist along reefs occupying densely inhabited shorelines with known input from 15 

land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to 16 

nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to 17 

the compounding stressors from land-based sources of pollution and lower seawater pH.  To constrain 18 

the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili 19 

reef flat every 4 h over a 6-d sampling period in March 2016. Abiotic process - primarily SGD fluxes - 20 

controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden 21 

freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ωarag) conditions. In 22 

contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by 23 

reef community metabolism. Superimposed on the diurnal signal was a transition during the second 24 

sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to 25 

ocean end-member TA and DIC measurements. A shift from net community production and 26 

calcification to net respiration and carbonate dissolution was identified. This transition occurred during 27 

a period of increased SGD-driven nutrient loading, lower wave height, and reduced current speeds. 28 

This detailed study of carbon chemistry dynamics highlights the need to incorporate local effects of 29 

nearshore oceanographic processes into predictions of coral reef vulnerability and resilience.   30 

 31 

1. Introduction 32 

Coral reefs provide critical shoreline protection and important ecosystem services, such as marine 33 

habitat, and support local economies through tourism, fishing, and recreation ( Hughes et al., 2003; 34 

Ferrario et al., 2014). However, coral reefs are being threatened by global climate change processes, 35 

such as increasing temperatures, ocean acidification (OA), and sea-level rise, and these effects are 36 

often compounded by local stressors from over-fishing, sedimentation, coastal acidification, and land-37 

based sources of pollution (Knowlton and Jackson, 2008). Isolating the effects of these stressors is 38 

difficult without establishing the biological and physical controls on community calcification and 39 

production. This is particularly challenging for coral reefs adjacent to densely inhabited shorelines, 40 

where freshwater fluxes can deliver excess nutrients, leading to eutrophication and coastal 41 

acidification, outbreaks of harmful algal blooms (Anderson et al., 2002), and decreased coral 42 

abundance and diversity (Fabricius, 2005;Lapointe et al., 2005). In many cases, eutrophication can 43 

alter ecosystem function and structure by shifting reefs from coral- to algae-dominated (Howarth et al., 44 
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2000; Andrefouet et al., 2002; Hughes et al., 2007). Changes in community structure can have 45 

profound impacts on coral reef metabolism and reef carbon chemistry dynamics, which are ultimately 46 

linked to reef health, and the ability to predict future responses to rising pCO2 levels (Andersson and 47 

Gledhill, 2013). Understanding the local drivers of ecosystem function and reef community 48 

metabolism is critical for gauging the susceptibility of the reef ecosystem to future changes in ocean 49 

chemistry. 50 

 51 

Numerous efforts have been conducted along west Maui, Hawaii, USA, to characterize and quantify 52 

submarine groundwater discharge (SGD) and associated nutrient input (Dailer et al., 2010;Dailer et al., 53 

2012;Glenn et al., 2013; Swarzenski et al., 2013; Swarzenski et al., 2016). Until this study, however, 54 

no field-based measurements of carbonate system parameters were available from the reefs in this area. 55 

The carbonate chemistry system is sensitive to changes in photosynthesis, respiration, calcification, 56 

and dissolution, and can be characterized by measuring total alkalinity (TA), dissolved inorganic 57 

carbon (DIC), pH, pCO2, nutrients, salinity, and temperature. Analysis of these parameters yields 58 

valuable information on ratios of net community calcification and production, and can be used to 59 

identify biological and physical drivers of reef health and ecosystem function (Silverman et al., 2007; 60 

Shamberger et al., 2011; Lantz et al., 2014; Albright et al., 2015; Muehllehner et al., 2016; DeCarlo et 61 

al., 2017).  Here, we present high temporal-resolution, in-situ measurements of carbonate chemistry 62 

dynamics collected from the shallow coral reef off Kahekili in Kaanapali, west Maui, Hawaii, USA 63 

(Fig. 1), with the aim of assessing the environmental controls on carbon metabolism (photosynthesis 64 

and respiration, calcification and dissolution), and evaluating reef community performance and 65 

function. This is particularly important given growing concern that coastal and ocean acidification may 66 

shift reef ecosystems from net calcification to net dissolution by the mid to end of the century ( 67 

Silverman et al., 2009; Andersson and Gledhill, 2013) with an overall reduction in calcification rates 68 

and increase in dissolution rates ( Shamberger et al., 2011; Shaw et al., 2012; Bernstein et al., 2016) 69 

that can contribute to reef collapse (Yates et al., 2017).  70 

 71 

The health of many of Maui’s coral reefs has been declining rapidly (Rodgers et al., 2015), with recent 72 

coral bleaching events leading to increased coral mortality (Sparks et al., 2016). The decline in coral 73 

cover along the shallow coral reef at Kahekili has been observed for decades (Wiltse, 1996; Ross et al., 74 

2012), along with a history of macro-algal blooms (Smith et al., 2005). The shift in benthic cover from 75 

abundant corals to turf- or macro-algae (primarily Ulva fasciata) and increased rates of coral 76 

bioerosion has been linked to input of nutrient-rich water via wastewater injection wells (Dailer et al., 77 
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2010;Dailer et al., 2012; Prouty et al. 2017a). Treated wastewater is injected through these wells into 78 

groundwater that flows toward the coast where it emerges on the reef through a network of small seeps 79 

and vents (Glenn et al., 2013;Swarzenski et al., 2016). Changes in coastal water quality observed off 80 

west Maui can impact the balance of production of CaCO3 skeletons by plants and animals on the reef, 81 

cementation of sand and rubble, and CaCO3 breakdown and removal that occurs through bioerosion, 82 

dissolution, and offshore transport. Here, a high-resolution seawater sampling study was conducted to 83 

constrain the carbonate chemistry system and evaluate the biological and physical processes altering 84 

reef health along the shallow coral reef at Kahekili. This study represents the first characterization of 85 

diurnal and multi-day variability of coral reef carbonate chemistry along a tropical fringing reef 86 

adjacent to a densely inhabited shoreline with known input from land-based sources of pollution, and 87 

identifies the controls on carbon metabolism. Ultimately, understanding carbonate system dynamics is 88 

essential for managing compounding effects from local stressors.  89 

 90 

2. Methods  91 

2.1 Study Site 92 

The benthic habitat along the shallow reef at Kahekili in Kaanapali, West Maui (Fig. 1) consists of 93 

aggregate reef, patch reef, pavement, reef rubble and spur and groove (Cochran et al., 2014), with 94 

persistent current flow to the south (Storlazzi and Jaffe, 2008).  Only 51% of the hardbottom at 95 

Kahekili is covered with at least 10% live coral (Cochran et al., 2014). The shallow fore reef 96 

experiences algae blooms, in response to inputs of nutrient-rich water via wastewater injection wells 97 

(Dailer et al., 2010;Dailer et al., 2012).  Groundwater inputs occur from both natural sources (rainfall 98 

and natural infiltration) and from artificial recharge (irrigation and anthropogenic wastewater).  The 99 

inland Wailuku Basalt, consisting of a band of unconsolidated sediment along the coast, and a small 100 

outcrop of Lahaina Volcanics, dominates the geology of the area surrounding the study site, controlling 101 

the flow of groundwater.  Mean annual precipitation rates are up to 900 cm yr-1 (Giambelluca et al., 102 

2013), with natural recharge the greatest in the interior mountains. 103 

 104 

2.2 Field Sampling 105 

Two intensive sampling periods were carried out during the 6-d period between 16 to 24 March 2016. 106 

Seawater nutrients and carbonate chemistry variables were collected every 4 h during each sampling 107 

period from the primary vent site and in adjacent coastal waters along the shallow reef at Kahekili (Fig. 108 

1). The first sampling period was from 15:00 on 16 March 2016 to 15:00 on 19 March 2016, and the 109 

second sampling period was from 15:00 on 21 March 2016 to 11:00 on 24 March 2016 (all reported 110 
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times in local [HST]). There were five sampling sites: two shallow (<1.5 m) sites (S1 and S2) located 111 

approximately 10 m offshore, two deeper (5 m) sites (S3 and S4) located approximately 115 m 112 

offshore, and a shallow site located approximately 20 m offshore and adjacent to an active SGD vent 113 

(vent site) (Glenn et al., 2013;Swarzenski et al., 2016). Sampling tubes (ranging from approximately 114 

100 to 200 m in length) were installed at each site by affixing the tube to a concrete block located 115 

approximately 20 cm above the seafloor, or by attaching the tubing directly to dead reef structure using 116 

zip ties. Tube intakes were fitted with a stainless steel screen cap to prevent uptake of large 117 

particulates. The remaining length of each tube was positioned along the seafloor to the adjacent beach 118 

by weighting the tube with a 1 m piece of chain, or by weaving the tube through dead reef structure 119 

approximately every 20 m. The tube outflow ends were labeled for each sampling site, bundled in a 120 

common location, and located above the high water line on the beach for sampling access. A peristaltic 121 

pump was used to pump seawater from the seafloor. Sampling tubes were flushed for a minimum of 20 122 

minutes to remove residual seawater before collecting data and water samples. Temperature (± 123 

0.01°C), salinity (± 0.01), and dissolved oxygen (±0.1 mg L-1) of water samples were measured using a 124 

YSI ProPlus multimeter that was calibrated daily. However, due to temperature change during water 125 

transit time within the sampling tube, in-situ temperatures were also recorded from Solonist CTD 126 

Divers installed at the intake of each sampling tube. An upward-looking 2-MHz Nortek Aquadopp 127 

acoustic Doppler profiler (ADP) was deployed at the southern deeper site (S4). The ADP sampled 128 

waves at 2 Hz for 17 min every hour and currents at 1 Hz every 10 min in 1-m vertical bins from 1 m 129 

above the seabed up to the ocean surface. 130 

 131 

2.3 Seawater Analyses 132 

Samples for dissolved nutrients (NH4
+, Si, PO4

3-, and [NO3
-+NO2

-]) were collected in duplicate by 133 

filtering water with an in-line 0.45-μm filter and 0.20-μm syringe filter, and were kept frozen until 134 

analysis. Nutrients were analyzed at the Woods Hole Oceanographic Institution’s nutrient laboratory 135 

and University of California at Santa Barbara’s Marine Science Institute Analytical Laboratory via 136 

flow injection analysis for NH4
+, Si, PO4

3-, and [NO3
-+ NO2

-], with precisions of 0.6-3.0%, 0.6-0.8%, 137 

0.9-1.3%, and 0.3%-1.0% relative standard deviations, respectively. Select samples were collected and 138 

analyzed for nitrate isotope (δ15N and δ18O) analyses at the University of California at Santa Cruz 139 

using the chemical reduction method (McIlvin and Altabet, 2005;Ryabenko et al., 2009) and 140 

University of California at Davis’ Stable Isotope Facilities using the denitrifier method (Sigman et al., 141 

2001). The isotope analysis was conducted using a Thermo Finnigan MAT 252 coupled with a 142 

GasBench II interface; isotope values are presented in per mil (‰) with respect to AIR for δ15N and 143 
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VSMO for δ18O with a precision of 0.3-0.4‰ and 0.5-0.6‰ for δ15N-nitrate and δ18O-nitrate, 144 

respectively. 145 

 146 

Seawater samples for determining carbonate chemistry variables (pH on the total scale, TA, and DIC) 147 

were collected from the 5 sampling sites using a peristaltic pump and pressure filtering seawater 148 

through a 0.45-μm filter. Samples for pH (±0.005) were filtered into 30-mL optical glass cells and 149 

analyzed within 1 hr of collection using spectrophotometric methods (Zhang and Byrne, 1996), an 150 

Ocean Optics USB2000 spectrometer, and thymol blue indicator dye. Samples for TA (±1 μmol kg-1) 151 

and DIC (±2 μmol kg-1) were filtered into 300-ml borosilicate glass bottles, preserved by adding 100 152 

μL saturated HgCl2 solution and pressure sealed with ground glass stoppers coated with Apiezon 153 

grease. TA samples were analyzed using spectrophotometric methods of (Yao and Byrne, 1998) with 154 

an Ocean Optics USB2000 spectrometer and bromocresol purple indicator dye. DIC samples were 155 

analyzed using a UIC carbon coulometer model CM5014 and CM5130 acidification module fitted with 156 

a sulfide scrubber, and methods of (Dickson et al., 2007). In-situ temperatures recorded from Solonist 157 

CTD Divers were reported and used to temperature-correct pH and perform CO2SYS calculations as 158 

described below. 159 

 160 

Certified reference materials (CRM) for TA and DIC analyses were from the Marine Physical 161 

Laboratory of Scripps Institution of Oceanography (Dickson et al., 2007).  Duplicate or triplicate 162 

analyses were performed on at least 10% of samples, yielding a mean precision of ~1 μmol kg-1 and ~2 163 

μmol kg-1 for TA and DIC analyses, respectively. The full seawater CO2 system was calculated with 164 

measured salinity, temperature, nutrients (phosphate and silicate), TA, DIC, and pH data using an 165 

Excel Workbook Macro translation of the original CO2SYS program (Pierrot et al., 2006).  Given the 166 

enriched nutrient setting of the study site, TA values were nutrient corrected in CO2SYS (Dickson, 167 

1981).  The aragonite saturation state and pCO2 are reported based on TA-pH pairs, with dissociation 168 

constants K1 and K2 from (Mehrbach et al., 1973) refit by (Dickson and Millero, 1987) and KSO4 from 169 

(Dickson, 1990).  The TA and DIC values were normalized to salinity (by multiplying by a factor of 170 

35/S, where S is the measured salinity value) to account for variations in TA and DIC driven by 171 

evaporation and/or precipitation (Friis et al., 2003) and are reported as nTA and nDIC as previously 172 

established in reef geochemical surveys (e.g., Suzuki and Kawahata, 2003; Yates et al., 2014; 173 

Muehllehner et al., 2016). However at the vent site the TA and DIC data was not normalized to salinity 174 

given the contribution of TA and DIC from SGD. 175 

 176 

6

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-35
Manuscript under review for journal Biogeosciences
Discussion started: 23 January 2018
c© Author(s) 2018. CC BY 4.0 License.



3. Results 177 

3.1 Submarine Groundwater Endmember 178 

The magnitude of change and absolute values in the carbonate chemistry, nutrients, and salinity were 179 

greatest at the primary vent site relative to the four sites along the reef. The salinity ranged from 10.64 180 

to 36.72 over the 6-d period (Fig. 2A), with the most dramatic decrease in salinity on March 22nd when 181 

salinity decreased from 32.45 to 12.47 within 4 hr. The reduction in salinity was sustained over a 32-hr 182 

period. A rapid change was also observed in the pH, DO, TA, DIC, and nutrient concentrations (Fig. 183 

2).  For example, nitrate concentrations at the vent site ranged from 0.45 to over 70 μmol L-1, with an 184 

average nitrate concentration of 117 (SD 0.09) μmol L-1 measured directly from the discharging seep 185 

water. The Ωarag values decreased to less than 1 and pCO2 values increased to 2000 μatm when salinity 186 

values dropped to less than 15 (Fig. 2D). No diurnal pattern was detected in the seawater carbonate 187 

chemistry at this site. Instead, these results are consistent with earlier work documenting lower pH, 188 

nutrient enriched freshwater endmember values tightly coupled to SGD ( Swarzenski et al., 2012; 189 

Glenn et al., 2013;Swarzenski et al., 2016).  190 

 191 

3.2 Reef Flat 192 

In contrast to the vent site, the overall magnitude of carbonate chemistry variation at the other four 193 

sites along the reef flat was less, and the signal was coherent among these sites.  This coherency is 194 

captured in the pH time series (Fig. 3B), where the pH data from the four sites were significantly 195 

(p<0.05) positively correlated with each other (with r ~ 0.5). The lowest salinity value along the reef 196 

flat was 33.51, indicating minimal freshwater influence on reef flat salinity. As a result, the carbonate 197 

system parameters measured along the reef were non-linear with respect to salinity, instead a diurnal 198 

pattern dominated the signal (Fig. 3). Lowest pH values occurred around midnight (23:00); and highest 199 

pH values occurred in the afternoon (~14:00-15:00). This diurnal pattern was also apparent in the DIC 200 

data, with lowest values in the afternoon and increasing around midnight, with a cubic spline fit (Press 201 

et al., 1988) highlighting diurnal cycle from all four sites along the reef flat. Likewise, the diurnal 202 

signal was identifiable in the Ωarag and pCO2 time-series, with Ωarag values increasing and pCO2 203 

decreasing during the mid-day hours (Fig. 3). The diurnal signal in the nTA time-series was similar to 204 

the signal for nDIC. At the shallow (<5 m) sites, pH and DO covaried (r2=0.43-0.87; p<0.001). The 205 

range in pH and Ωarag was largest at the shallow sites; however, the average values were similar along 206 

the reef, 3.02 to 3.06 and 8.00 to 8.01, respectively, and were elevated relative to the average values 207 

recorded at the vent site, 7.85 (SD 0.17) and 2.28 (SD 0.81) for pH and Ωarag, respectively (Prouty et 208 

al., 2017b). No diurnal pattern was observed for the nutrient data; however, there was an offshore 209 
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gradient in nutrient concentrations with enriched nutrients at the shallow sites compared to the deeper 210 

sites. Nutrient concentrations (Si, PO4
3-, and NO3

-) from the two shallow sites were statistically greater 211 

than the two deeper sites according to pairwise multi-comparison one-way ANOVA with a post hoc 212 

Tukey HSD (p>0.05).  For example average nitrate concentrations at the two shallow sites were 0.71 213 

(SD 0.35) and 0.41 (0.18 SD) compared to 0.17 (SD 0.10) and 0.19 (SD 0.11) μmol L-1. Deficits and 214 

surpluses of nTA and nDIC, with respect to open ocean conditions, were calculated as ΔnTA and 215 

ΔnDIC using values from Station HOT (Dore et al., 2009), located approximately 250 km offshore. 216 

The ΔnTA values ranged from -332 μmol kg-1 to 85 μmol kg-1 and -171 μmol kg-1 to 141 μmol kg-1 217 

ΔnDIC. The standard error of difference (SEdif) was calculated for ΔnTA and ΔnDIC values to evaluate 218 

whether the deficits and surpluses of nTA and nDIC were significant. Histogram plots reveal statistical 219 

(p=0.05; critical t value of 1.68; df=37) deficits and surpluses as well as differences between the first 220 

and second half of the sampling period (Fig. 4). Results show a shift from a deficit in ΔnTA to a 221 

surplus in ΔnTA at all stations, as well as a shift from a deficit in ΔnDIC to a surplus in ΔnDIC, 222 

suggesting a shift in the second sampling period from net CaCO3 production to net CaCO3 dissolution, 223 

and from net photosynthesis to net respiration. This change was most distinct at the two shallow sites. 224 

The nTA and nDIC values from the second sampling period were also enriched relative to a range of 225 

values reported from nearshore Oahu sites (Drupp et al., 2013).  226 

 227 

4. Discussion  228 

The diurnal pattern observed at the four sampling sites along the reef flat is typical of a reef 229 

environment where biotic processes involving coral reef community metabolism (e.g., 230 

respiration/photosynthesis and calcification/dissolution) dominate the carbonate chemistry system 231 

(e.g., Smith, 1973). The non-linear relationship between salinity and carbonate chemistry parameters 232 

further supports the notion that biotic processes are driving carbonate chemistry variability along the 233 

reef flat (Millero et al., 1998; Ianson et al., 2003). The lower amplitude nTA diurnal signal supports 234 

previous observations that the region was algal-dominated (Smith et al., 2005). In this case, the lower 235 

biomass of calcifying organisms leads to conditions that favor respiration-photosynthesis processes 236 

relative to calcification-dissolution (Jokiel et al., 2014). Elevated pH values during mid-day, coincident 237 

with elevated sea surface temperature (SST) and peak solar irradiance, are consistent with maximum 238 

photosynthetic activity. DIC decreased during the day due to photosynthesis, whereas at nighttime, pH 239 

decreased and DIC increased in response to respiration (Fig. 3).  This pattern is in stark contrast to the 240 

primary vent site where no diurnal pattern was observed, and abiotic controls on the carbonate system 241 

dynamics explain the strong linear relation to salinity. Variability at the vent site is driven by SGD 242 
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rates, which are elevated during low tide when hydraulic gradients are the steepest (Dimova et al., 243 

2012;Swarzenski et al., 2016). 244 

 245 

To further understand the temporal variability in carbonate chemistry over the 6-d sampling period 246 

along the reef flat, diagrams of nTA versus nDIC were plotted according to Zeebe and Wolf-Gladrow, 247 

(2001), along with vectors indicating theoretical effects of organic and inorganic carbon metabolism on 248 

seawater chemistry (Kawahata et al., 1997;Suzuki and Kawahata, 2003) (Fig 5). Diagrams of nTA-249 

nDIC indicate the dominance of net community production (NCP) and net community calcification 250 

(NCC) during the first sampling period (16-19 March).  The slope values of the nDIC-nTA plots were 251 

used to calculate ratios of NCC:NEP (Table 1) using methods of Suzuki and Kawahata (2003). In the 252 

absence of reliable water mass residence time, ratios were used rather than metabolic rates. The 253 

NCC:NEP ratios for the first sampling period ranged from 0.50 to 0.87 indicate that both calcification 254 

and photosynthesis contributed to variability in carbonate system parameters with photosynthesis as 255 

the dominant processes in all cases. This pattern was observed at all four sites along the reef flat.  In 256 

comparison, a shift occurred after the first sampling period. Elevated nDIC and nTA values during 21-257 

24 March indicate a shift to primarily respiration and dissolution in the nTA-nDIC diagrams (Fig. 5). 258 

At the shallow sites, S1 and S2 (Fig. 5A and B), the NCC:NCP ratios were 0.56 and 0.39 (Table 1), 259 

respectively, indicating primarily net respiration at these locations. On Heron Island for example, high 260 

organic production results in NCC:NCP ratios between 0.25 and 0.29 (McMahon et al., 2013; Albright 261 

et al., 2015). Dissolution and respiration contributed nearly equally with NCC:NCP ratios near 1.0 at 262 

sites S3 and S4 located further offshore.  Rather than reflecting an artifact of the salinity normalization, 263 

given the non-linear relation of DIC and TA to salinity along the reef flat, this shift is interpreted as a 264 

reef community response.  As shown in Figures 4 and 5, this change captures a shift from a reef 265 

community dominated by calcification to one dominated by respiration and dissolution. 266 

 267 

The shift from net photosynthesis (P) to net respiration (R) as captured in the ΔnDIC histogram plots 268 

(Fig. 4), suggests that the coral-algal association consumed more energy than it produced during the 269 

second sampling period. As a proxy for autotrophic capacity, the change in P:R ratio may reflect an 270 

increase in coral heterotrophic feeding relative to autotrophic feeding (Coles and Jokiel, 1977;Hughes 271 

and Grottoli, 2013). Typically, stored lipid reserves in the tissue are utilized when the stable symbiotic 272 

environment is disturbed (e.g., Szmant and Gassman, 1990; Ainsworth et al., 2008). Although short-273 

lived, thermally-induced bleaching has been linked to depletion of coral lipid reserves (e.g., Hughes 274 

and Grottoli, 2013), excess nutrient loading can also shift the stability of the coral-algae symbiosis, 275 
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thereby reducing stored tissue reserves (Wooldridge, 2016). According to Glenn et al. (2013), up to 11 276 

m3 d-1 of dissolved inorganic nitrogen are discharged onto the West Maui reef as the result of receiving 277 

and treating over 15,000 m3 d-1 of sewage. Using a SGD flux rate of 87 cm d-1 at the primary seep site 278 

(Swarzenski et al., 2016), and SGD nitrate end-member concentration of 117 μmol L-1 (Prouty et al., 279 

2017b), the nitrate flux from the primary vent site is 712 mol d-1, clearly demonstrating excess nutrient 280 

loading.  As described above, an offshore gradient in nutrient concentrations was observed with 281 

enriched nutrients at the shallow sites compared to the deeper sites, consistent with a decrease in coral 282 

δ15N values away from the vent (Prouty et al., 2017a). Coral tissue thickness was also negatively 283 

correlated to coral tissue δ15N values (r = -0.66; p = 0.08), with the latter serving as a proxy for 284 

nutrient loading in alga samples along the reef flat (Dailer et al., 2010). It is possible that a reduction in 285 

coral tissue reflects preferential heterotrophic feeding under high nutrient loading, with nutrient 286 

enrichment by sewage effluent increasing primary production and biomass in the water column (e.g., 287 

Smith et al., 1981; Pastorok and Bilyard, 1985). While assessing the impacts of nutrient loading on 288 

coral physiology may be long term and subtle in some cases, results from our study highlight the 289 

potential short-term impacts of nutrification on the short term.  290 

 291 

Identifying the exact mechanism(s) responsible for driving this shift is difficult given the complexity of 292 

the reef system.  Possible explanations include warmer SSTs, suspension of organic matter, as well as 293 

secondary effects of nutrification from contaminated SGD (D’Angelo and Wiedenmann, 2014).   294 

Given that microbial communities rapidly take up inorganic nutrients (Furnas et al., 2005), there could 295 

be increased respiration as a result of increased microbial remineralization of organic matter in the 296 

nutrient-loaded environment.  In other words, enhanced SGD- driven nutrient fluxes during the second 297 

sampling period could have increased microbial growth and remineralization, shifting the reef 298 

community metabolism, as captured in a shift in the carbonate chemistry system.  In addition to 299 

community metabolism, local oceanographic effects such as the wind and wave regime can also drive 300 

carbonate chemistry by altering air-sea exchange and water mass residence times. During the first 301 

sampling period, the wave height increased from 0.4 m to 1.6 m over the first 2 d and mean current 302 

speeds were 1.6 cm s-1 (Fig. S1). In comparison, during the second sampling period, wave height 303 

declined to less than 0.4 m and mean current speeds were 1.0 cm s-1. Together, the reduced wave 304 

height and reduced wind speeds favor slower release of CO2 generated by calcification and respiration 305 

processes from the water column (Massaro et al., 2012), resulting in higher pCO2 and lower pH. 306 

 307 

Despite being situated in an oligotrophic region with naturally occurring, low nutrient concentrations, 308 
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anthropogenic nutrient loading to coastal waters via sustained SGD is driving nearshore eutrophication 309 

( Dailer et al., 2010; Dailer et al., 2012; Bishop et al., 2015; Amato et al., 2016; Fackrell et al., 2016), 310 

with algal δ15N signatures at Kahekili Beach Park indicative of wastewater effluent (Dailer et al., 311 

2010;Dailer et al., 2012). In response, there has been a shift in benthic cover from abundant corals to 312 

turf- or macro-algae over the last two decades.  Areas of discrete coral cover loss up to 100% along the 313 

shallow coral reef at Kahekili have been observed for decades ( Wiltse, 1996; Ross et al., 2012), with a 314 

history of macro-algal blooms (Smith et al., 2005).   More recently, Prouty et al. (2017a) found 315 

accelerated nutrient driven-bioerosion from coral cores collected along the Kahekili reef flat in 316 

response to land-based sources of nutrients.  This is consistent with earlier work showing nutrification-317 

mediated increase in plankton loads can trigger increases in filter feeders and bioeroders that endanger 318 

reef structure integrity (e.g., Fabricius et al., 2012).  Eutrophication from nutrient enriched SGD may 319 

contribute to an already compromised carbonate system (i.e., reduced pH and Ωarag) by increasing net 320 

respiration and remineralization of excess organic matter, and increasing bioerosion.   Therefore, 321 

secondary effects of nutrient-driven increase in phytoplankton biomass and decomposing organic 322 

matter are also important considerations for coral reef management (D’Angelo and Wiedenmann, 323 

2014).   324 

 325 

As discussed above, SGD rates are elevated during low tide when the relative pressure head between 326 

terrestrial groundwater and the oceanic water column is greatest (Dimova et al., 2012;Swarzenski et 327 

al., 2016). Relative SGD is greater in the shallows close to shore where the tidal height is larger 328 

relative to the depth of the water column. Higher islands, therefore, have the potential for not only 329 

greater orographic rainfall and thus submarine groundwater recharge, but also greater potential 330 

pressure head and thus enhanced SGD- driven nutrient fluxes. There is also greater potential for 331 

enriched nutrient sources and reduced water quality with fast-growing population and development 332 

(Amato et al., 2016;Fackrell et al., 2016). Thus, SGD represents a key vector of nutrient loading in 333 

tropical, oligotrophic regions (e.g., Paytan et al., 2006). At the same time, closer to shore, current 334 

speeds are generally slower resulting in longer water mass residence times (Storlazzi et al., 2006); 335 

longer residence times would also be expected closer to the seabed, compared with upper water 336 

column flows (Storlazzi and Jaffe, 2008). Together, these suggest that the resulting exposure (= 337 

intensity x residence time) of coral reefs to nutrient-laden, low pH submarine groundwater is greater 338 

for coral reefs closer to shore off high islands than along barrier reefs or on atolls. This heightened 339 

vulnerability therefore needs to be taken into account when evaluating vulnerability of nearshore 340 

fringing reefs to changes in carbonate chemistry system given evidence of nutrient driven-bioerosion 341 
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from land-based sources of pollution. 342 

 343 

 344 

5. Conclusion  345 

Field based measurements of carbonate chemistry variability were made along a shallow coral reef off 346 

Kahekili, west Maui, and captured differences in the relative importance of inorganic and organic 347 

carbon production over a 6-d period in March 2016. Submarine groundwater discharge fluxes 348 

controlled the carbonate chemistry adjacent to the primary vent site, with nutrient-laden freshwater 349 

decreasing the pH levels and favoring undersaturated Ωarag conditions. In contrast, reef community 350 

metabolism dominated the carbonate chemistry diurnal signal at sites along the reef flat. Superimposed 351 

on the diurnal signal was a transition during the second sampling period, yielding a surplus of nTA and 352 

nDIC compared to ocean endmember measurements indicating a shift from net photosynthesis and 353 

calcification to net respiration and carbonate dissolution. This shift could be interpreted as a direct 354 

response to increased nutrient loading, and subsequent enhancement of organic matter 355 

remineralization.  Predictions of reef response to elevated pCO2 levels assume reef water tracks open-356 

ocean pH, however local effects are equally important (e.g., Cyronak et al., 2013), particularly along 357 

densely-inhabited shorelines with known input from land-based sources of pollution. Building on 358 

previous work documenting the input of nutrient laden, low-pH freshwater to the reefs off Kahekili, 359 

results presented here offer a first glimpse into how anthropogenic-driven eutrophication might add an 360 

additional stressor to thresholds tipping the balance between net carbonate accretion and net carbonate 361 

dissolution, thus altering carbonate system dynamics.  362 
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Figure Captions 382 

Figure 1. Location map of the island of Maui, Hawaii, USA, and the study area along west Maui. 383 

Bathymetric map (5-m contours) of study area showing seawater sampling locations (blue closed 384 

circle) along Kahekili Beach Park, and the primary seep site (blue open circle) superimposed on 385 

distribution of percent coral cover versus sand. 386 

 387 

Figure 2 Results of time-series of seawater chemistry variables over a 6-d period collected from 388 

bottom water near the seep site on the nearshore reef every 4 hr. (A) Salinity, (B) dissolved nutrient 389 

(nitrate+nitrite, phosphate, and silicate) concentrations (μmol L-1), and nitrate stable nitrogen isotopes 390 

(δ15N-nitrate; ‰), (C) total alkalinity (TA) and dissolved inorganic carbon (DIC) (μmol kg-1), (D) 391 

calculated carbonate parameters for aragonite saturation state (Ωarag), and pCO2 (μatm; inverted) based 392 

on TA-pH pairwise and measured salinity, temperature, nutrients (phosphate and silicate) data, (E) 393 

dissolved oxygen (DO; mg L-1), and (F) temperature corrected pH (total scale). End-of-century 394 

projections according to IPCC-AR5 RCP8.5 “business as usual” scenario for pH (reduction by 0.4 395 

units), Ωarag (2.0; blue dashed), and pCO2 (750 μatm; red dashed). 396 

 397 

Figure 3 Carbonate chemistry parameters and sea surface temperature (SST) composite from S1, S2, 398 

S3 and S3 along the shallow reef flat of Kahekili, Maui and cubic spline fits highlighting diurnal cycle 399 

for the first (16-19 March  2016; solid line) and second (21-24 March 2016; dashed line) sampling 400 

period for (A) Temperature, (B) pH, (C) nDIC and (D) nTA (μmol kg-1), (E) Ωarag and (F) pCO2 401 

(μatm). 402 

 403 

Figure 4 Histogram ΔnTA and ΔnDIC capturing deficits and surpluses of nTA and nDIC with respect 404 

to open ocean conditions. Overall a transition from net CaCO3 production to net CaCO3 dissolution 405 

and net photosynthesis to net respiration occurred between the first (16-19 March 2016; blue) and 406 

second (21-24 March 2016; red) sampling period for the shallow sampling sites (A)-(B) S1 and (C)-407 

(D) S2, and the two deeper sites (E)-(F) S3, and (G-H) S4. Statistical (p=0.05) deficit and surplus 408 

values (±) for ΔnTA and ΔnTA shown in parentheses.   409 
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 410 

Figure 5 Seawater carbonate chemistry system along the reef flat off Kahekili as a function of nDIC 411 

and nTA for the shallow sampling sites (A). S1 and (B) S2, and two deeper sites (C) S3, and (D) S4 for 412 

the first (blue) and second (red) sampling periods and their respective slopes (solid lines) of nDIC and 413 

nTA (Table 1) and theoretical slope (dashed lines) given the predicted effects of photosynthesis, 414 

respiration, calcification, and dissolution as shown in (E) and the respective change in net community 415 

calcification (NCC) and net community production (NCP).  416 

 417 
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 637 
Site nTA-nDIC Slope NCC:NCP r2

16-19 March 2016   
S1 0.88 0.78 0.94
S2 0.67 0.50 0.75
S3 0.93 0.88 0.89 
S4 0.93 0.87 0.92

  
21-24 March 2016   
S1 0.72 0.56 0.78
S2 0.56 0.39 0.77 
S3 0.99 0.98 0.95
S4 1.04 1.08 0.94
 638 

Table 1 639 

Slope of salinity normalized total alkalinity (nTA): salinity normalized dissolved inorganic carbon 640 
(DIC), net community calcification: net community production ratio (NCC:NCP=2ΔDIC/ΔTA-1) 641 
(Suzuki and Kawahata, 2003) and correlation coefficients (r2). 642 
 643 
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